Discovery Life Sciences 6 Henshaw Street Woburn, MA 01801 Tel: (866) 838-2798 info@dls.com https://www.dls.com/

Human CYP1A2 + P450 Reductase SUPERSOMES™

Catalog Number.......456203

Lot Number......2301249

Storage Conditions. STORE AT -80°C

Date Released2023 March

Expiration Date......2033 February

Cytochrome c Reductase Activity.......1600 nmole/(min x mg protein)

Phenacetin Deethylase Activity.......52 pmol product/(min x pmol P450)

PRODUCT DESCRIPTION: This activity is catalyzed by CYP1A2 which is expressed from human CYP1A2 cDNA using a baculovirus expression system. Baculovirus infected insect cells (BTI-TN-5B1-4) were used to prepare these microsomes. A microsome preparation using wild type virus (Catalog No. 456201) should be used as a control for native activities.

ADVICE:

- Thaw rapidly in a 37°C water bath. Keep on ice until use
- Aliquot to minimize freeze-thawing cycles. Less than 20% of the catalytic activity is lost after 6 freeze
 thaw cycles.
- Western immunoblotting indicates the expressed CYP1A2 has similar mobility as CYP1A2 in human liver microsomes.
- Comparison of Western immunoblotting intensity and spectral P450 contents for this product and human lymphoblast-expressed CYP1A2 indicates that a substantial amount of apoprotein is found in this product.

HAZARD WARNING: The product was produced using baculovirus (*Autographa californica*) infected insect cells (BTI-TN-5B1-4). This virus is not known to be pathogenic to humans or other mammals.

SAFETY INFORMATION: Safety assessment indicates this product is not hazardous, therefore no SDS (Safety Data Sheet) is provided. Use standard laboratory practices for the handling and disposal of Biosafety Level 1 materials.

Discovery Life Sciences 6 Henshaw Street Woburn, MA 01801 Tel: (866) 838-2798 info@dls.com https://www.dls.com/

PRIMARY ASSAY METHOD: A 0.5 mL reaction mixture containing 10 pmole P450, 1.3 mM NADP+, 3.3 mM glucose-6-phosphate, 0.4 U/mL glucose-6-phosphate dehydrogenase, 3.3 mM magnesium chloride and 0.2 mM phenacetin in 100 mM potassium phosphate (pH 7.4) was incubated at 37°C for 10 minutes. After incubation, the reaction was stopped by the addition of 250 μL 10 μM acetamidphenol- 13 C₂ 15 N in acetonitrile with 0.1%

formic acid and centrifuged (10,000 x g) for 3 minutes. The product was detected by LC-MS/MS using its Q1 mass and Q3 mass with positive polarity and quantitated by comparing the peak area ratio to a standard curve of acetamidophenol.

ANALYTICAL METHOD:

Materials

Column	2.1 x 50 mm 5µm C18 HPLC
Mobile Phase A	0.1% Formic Acid in dH₂O
Mobile Phase B	0.1% Formic Acid in Acetonitrile

Mass Transitions of MRM

Compound	Q1 Mass (amu)	Q3 Mass (amu)
Analyte- Acetamidophenol	152.0 ±0.2	110.0 ±0.2
Internal Standard- Acetamidophenol- ¹³ C ₂ ¹⁵ N	155.0 ±0.2	111.0 ±0.2

Gradient Separation Conditions

Time	Flow Composition of	Flow Composition of	Flow Rate
(minute)	Mobile Phase A (%)	Mobile Phase B (%)	(µL /min)
0.0	98	2	750
0.4	98	2	750
1.0	60	40	750
1.1	2	98	750
1.3	0	100	750
1.4	98	2	750
1.7	98	2	750

Quality Assurance

Date